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Stability of weakly nonlinear deep-water waves in two 
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The stability of a weakly nonlinear wave train on deep water to two- and three- 
dimensional modulations is investigated using an improved approximation due to 
Zakharov (1968). The results are expressible in simple analytical forms, and show 
good quantitative agreement with available experimental data and exact numerical 
calculations over a broad range of wave steepness in the unidirectional case. 

1. Introduction 
Benjamin & Feir (1967) made the important discovery that a uniform train of 

weakly nonlinear deep-water waves is unstable to long-wave perturbations. Zakharov 
(1968) showed that modulations of weakly nonlinear deep-water waves are describable 
by a nonlinear Schrodinger equation, and the instability results of Benjamin & Feir 
can be recovered. In  addition, the nonlinear Schrodinger equation can be solved 
exactly for certain initial conditions to yield stable envelope soIitons (Zakharov & 
Shabat 1971). 

The instability of a uniform wave train to three-dimensional perturbations$ has 
been determined by Zakharov (1968) using the nonlinear Schrodinger equation. The 
instability of other steady plane envelope solutions, namely the envelope soliton and 
the cnoidnl solutions, to three-dimensional perturbations has been established by 
Zakharov & Rubenchik (1973), Saffman & Yuen (1978) and Martin, Saffman & Yuen 

The nonlinear Schrodinger equation can also be used to study the long-time evolu- 
tion of the unstable wave train. I n  two dimensions, Lake et al. (1977) identified the 
phenomenon of recurrence, which was further studied by Yuen & Ferguson (1978~).  
The long-time evolution of an unstable wave train in three dimensions has been 
investigated by Yuen & Ferguson (19786) and Martin & Yuen (1980). 

Despite the impressive agreement between the theoretical predictions based on the 
nonlinear Schrodinger equation and laboratory experimental data (Lake et al. 1977)) 
the equation appea.rs deficient in two respects which suggests the need for a higher- 
order approximation. First, the quantitative agreement demonstrated by Lake et al. 
(1977) relied on a questionable argument (see 3 3.1 below). Second, the instability 

t Applied Mathematics, California Institute of Technology, Pasadena, CA 91 125. 
$ We use the term ‘three-dimensional’ to signify the existence of variations in the crest- 

wise direction, the term ‘two-dimensional’ refers to plane disturbances. This set of notations 
acknowledges the depth dependence of the motion of water particles in deep-water wave problems. 

(1980). 
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diagram for three-dimensional disturbances on a uniform wave train does not possess 
high-wavenumber cutoff. Consequently, as demonstrated by Martin & Yuen (1980), 
the equation allows the leakage of energy to higher modes outside its range of validity 
and can become inconsistent (i.e. not uniformly valid for long times). 

I n  this paper, we use a more accurate equation given by Zakharov (1968) (from 
which the nonlinear Schrodinger equation was derived with further approximations) 
to re-investigate the stability properties of uniform deep-water wave trains to  two- 
and three-dimensional modulations. We shall demonstrate that the results from 
Zakharov's equation agree quantitatively in the common ranges of application with 
the numerical calculations for the full water wave equations by Longuet-Higgins 
(1978) and the analytical result derivable from Whitham's theory (Peregrine & 
Thomas 1979). The results of Longuet-Higgins (1978) are for two-dimensional 
modulations, and those of Peregrine & Thomas (1979) are confined to the limit of 
infinitely long perturbations. Our results give an improved stability diagram for 
three-dimensional perturbations which exhibits high-wavenumber cutoffs and re- 
stabilization for large wave steepness in both two and three dimensions. Furthermore, 
comparison with experimental data of Lake et al. (1977) and Benjamin (1967) yields 
excellent quantitative agreement without reliance on any extrinsic arguments. 

It thus appears that Zakharov's equation provides an improved description of the 
dynamics of nonlinear water waves. I n  fact, i t  has been used in the study of three- 
dimensional bifurcation of steady waves (Saffman & Yuen 1980a, b )  and properties 
of random inhomogeneous waves (Crawford, Saffman & Yuen 1980) with interesting 
results. 

2. The governing equation 

nonlinear deep-water waves, correct to third order in amplitude, is 
It has been shown by Zakharov (1968) that the governing equation for weakly 

. aB(k, t )  m 

z ___ = I// T(k, k,, k,, k3) 6(k + k, - k, - k3) exp {i[w(k) + w(k,) 
at - -m 

-~~(k,)-o(k,)]t)B*(k,,t)B(k,,t)13(k,, t)dk,dk,dk,, ( 1 )  

where B(k, t )  can be interpreted as the spectral component of the wave envelope, being 
related to the free surface ~ ( x ,  t )  by the expression 

r ( X ,  t )  = '1 2n (")" 24k)  (B(k ,  t )  exp {i[k .x - w(k) t ] }  
+B*(k, t )  exp { - i[k.x- w(k) t]}}dk, (2) 

( )* denotes the complex conjugate, k = (k, 1) is the wave vector, x = (x, y) is the 
horizontal spatial vector, and w is the linearized wave frequency in radians per 
second, which is related to k through the dispersion relation and which is given by 
w(k) = (glkJ)g with g as the acceleration due to  gravity. T(k, k,, k,, k3) is a real scalar 
coupling coeacient given in the appendix. 

We consider B(k,  t )  as a superposition of discrete modes 

B(k,t) = CB,(t)S(k-k,). 
rb 

(3) 
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Substituting (3) into (1) and evaluating the delta functions, we obtain for each mode 
kp  the discrete equation 

(4) 

where wi = w(k,), the generalized Kronecker delta Jp+i-j-m denotes that summation 
is taken over those subscripts satisfying 

( 5 )  

and Tp,i,j,, denotes T(k,, ki, kj, km). At this stage we note that if we specialize to 
those modes for which 

dBP - i- - C E E ap+i-j-mTp,i,j,meXp {i(up + m i  - mi - urn) t}  B: BjB,, dt i j m  

kp + kg = kj + k,, 

wp+wi = wj+wm ( 6 )  

in addition to the constraint ( 5 ) ,  we would arrive a t  the discrete resonant interaction 
equation first derived by Benney (1962) : 

(7) 
*dBP - 
9 dt - F F E a p + i - j - m T p , i , j , m B i * B j B m .  

o i m  

3. Stability of a uniform wave train 

k, = (kn,O) is 
The solution of equation (4) corresponding to a uniform wave train of wave vector 

B,(t) = B,exp( -iT,Bit) for kp = k,, (8) 

= o  for kp =i= k,, 

where To = T(k,, k,, k,, k,) = ki/47r2, and B, = 7ra0(2w,/k,)*. The amplitude of the 
carrier wave is a,. We impose perturbations represented by a pair of wave vectors 
k, t- K with amplitudes B*(t). Neglecting the squares of small quantities, i t  follows 
from equation (4) that B*(t) satisfy 

(9) 
. dB* t - = T  ~ t , ~  BE B$ exp [ - i( Q + 2T0 BE) t ]  + 2T*, rt B; B+ , at 

where we have introduced the simplified 'notation 

Substituting 

we obtain a second-order eigenvalue problem in c,8+ and 8 2  which has no explicit 
time dependence. The eigenvalues (T are the roots of 

q2+ 2B:(T_,-- T+, +) (T+ T+,-T-,+B;-- ( -  &St - T,B:+ 2T-,-B:) 
x( - ;a -T, ,R;+2T, , ,R3 = 0. ( 1 2 )  
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FIGURE 1. Instability growth rate as a function of perturbation wavenumber for 
various values of wave steepness. 

The solutions are 

= (T+,+ - T-,-) BE rf: { - T+,-T-,+B$+ [ - tQ + Ba(T+,++ T-,-- To)]2)$. ( 1 3 )  

The expression for a given by ( 1 3 )  gives I m a  correct to O(kiag), with no require- 
ment that I KI be small compared with J kol . However, the original approximations 
contained in the derivation of equation (4) require that Q be of the order of ToBt for 
the mechanisms described to be dominant. 

3.1. Case of two-dimensional modulation 
I n  this case, we put K = (Kz ,  0) and define the dimensionless perturbation wave- 
number K = Kz/ko. From the dispersion relation, it can be seen that, for Q to be small, 
K must be small. I n  other words, the perturbations that possess the growth rate given 
by (13) must be ‘sidebands’ representing long-wave modulations. In the limit of very 
long perturbational wavelength, i.e. K 4 1, we can expand the dispersion relation in 
powers of K : 

Therefore 
hJ& = 00 f &do K - &W0K2. 

Q = 2 W 0 - W + - W -  = &d0K2.  

(14) 

(15) 

Expanding the expressions for T*,+ !!‘*,T in powers of K and retaining only terms 
to O(kgat) and O ( K ~ )  in equation (13), we obtain 
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FIGURE 2. Stability boundary for growth of unstable perturbations for two-dimensional wave 
trains (comparison with results of Longuet-Higgins [ 19781). 

since T,Bg = &kgagw,. This result is identical with the instability first discussed by 
Benjamin & Feir (1967), and to that which follows from a stability analysis of the 
nonlinear Schrodinger equation (Hasimoto & Ono 1972; Lake et al. 1977). 

We shall now show that equation (16) is not a very good approximation of equation 
(13) for moderate but small values of k,a,. To illustrate this, we show in figure 1 a 
plot of the instability growth rate I m  cr [as obtained from equation ( 1  3)] as a function 
of the normalized perturbation wavenumber 

A = ~ / 2 k , a ,  (17) 

for various values of ,%,a,. The result of equation (16) [which is that of Benjamin & 
Feir (1967) as labelled] is approached when k,a,+ 0. For non-zero k,a,, departures 
arise for larger values of A. These departures become significant with increasing 
k,a,. For k,a, = 0.2, the prediction regarding the most unstable wavenumber and 
the maximum growth rate achieve disagreement as large as 30%. Furthermore, 
equation (13) predicts that the very long waves begin to become stable for k,a, about 
0.39. This restabilization of the very long waves agrees qualitatively with the results 
of Whitham’s theory which yield long-wave restabilization a t  k,a, = 0-34. The 
quantitative discrepancy of 14 yo is better than expected, since the present theory is 
formally accurate only to O(kgai). 

Figure 1 also shows the trend towards restabilization of the entire system for 
sufficiently large &a, (at about k,a, = 0.50). This feature qualitatively agrees with 
the numerical results obtained from exact water wave equations by Longuet-Higgins 
(1078). A better illustration of this phenomenon is given in figure 2 ,  where we have 
plotted the stability diagram in the ( K ,  k,a,) space. The numerical results of Longuet- 
Higgins (1978), confined to only discrete values of K ,  are also plotted. It can be seen 
that the qualitative agreement is satisfactorJ7 overall, and quantitative agreement is 
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Wave steepness, koao 

FIGURE 3. Normalized frequencies of the perturbation sidebands as a function of the wave 
steepness and perturbation wavenumber, K = K,/ko. The co-ordinate system is fixed relative 
to the carrier wave. The shaded region indicates that cr is complex (unstable). 
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FIGURE 4. Instability growth rate as a function of wave steepness with perturbation 
wavenumber as a parameter. 
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Wave steepness, koao 

FIQURE 5. Comparison of calculated amplification rate with experimental results as a function 
of wave steepness. Experimental results: 0, K = 0.4, Lake et al. (1977); 0 ,  K = 0.2, Lake et al. 
(1977): A, Benjamin (1967). 
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FIQURE 6. Maximum unstable frequency as a function of wave steepness. Data taken from 
figure 1 [with fthscissa corresponding to scale labelled ( k ~ ) ~ , ~ ]  of Lake & Yuen (1977). 
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achieved for small and moderate values of k,a,. In  figures 3 and 4, we plot the real 
and imaginary parts of the perturbation frequency in the frame of reference moving 
with the individual wave crests. These plots can be compared with figures 5 and 6 of 
Longuet-Higgins (197q.t Note that no restabilization was predicted by the analysis 
of Benjamin & Feir (1967) or that based on the nonlinear Schrodinger equation. 

For given values of K (0.2 and 0-4)) the predicted growth rate as a function of wave 
steepness has been compared to experimental data of Benjamin (1967) and Lake et al. 
(1977). The results are shown in figure 5. It can be seen that the agreement is quanti- 
tatively satisfactory. The Benjamin-Feir result is shown for comparison. In  figure 6, 
we compare the predicted results on the most unstable perturbation frequency as a 
function of wave steepness with experimental data. Again, the agreement between 
theory and experiment is very good, whereas the result of Benjamin & Feir over- 
predicts the most unstable perturbation frequency. 

Lake & Yuen (1977) proposed that the discrepancy between the Benjamin & Feir 
result and the experimental data is due to the generated waves being in some sense 
less nonlinear than has been inferred from the measurements. In light of the present 
results and the results of Longuet-Higgins (1978), it appears that this effect is far less 
significant than was believed and should be disregarded. 

3.2. Case of three-dimensional modulation 
In  the limit of very long modulation wavelength, we can again expand w& and Q 
about k, in powers of IKI to obtain 

and 

Also expanding Tk, +, T*,F and retaining terms to O(kiai) and O( I KI 2), we obtain 

FT = (-+slkiaiw,+ aQ2) 1 :  , 

where Q is given by (19). This result agrees with that obtained from stability analysis 
based on the three-dimensional nonlinear Schrodinger equation as given by Zakharov 
(1968), Benney & Roskes (1969) and Davey & Stewartson (1974). Note in figure 7 
that the instability in the K = (K,,  K,)  plane defined by (20) lies in between a pair 
of straight lines, K, = 5 J2 K ,  or Q = 0, and a pair of hyperbolae, defined by 
Q = 2kiagw,, where Q is given by (19)) and is infinite in extent. 

The general expression for the stability boundary is given by 

Q = 2 ~ 0  - W+ - W- = 2(T+,+ + T-,- - To k (T+,-T-,+)*) Bi, (21) 

where sl is O(kga$w,) with no other restriction on K. This is shown in figure 8 in two 
different sets of scales for the axes. The most important difference between the 

7 The instability at large wave steepness found by Longuet-Higgins (1978) for the case K = 0.5 
is not reproduced by equation (12). This is to be expected since Zakharov’s approximation is 
accurate only to O(k’W) ,  and the instability at  large wave steepness is a special case of McLean 
et aZ.’s three-dimensional instability which is O(k3a3) (see McLean et al. 1981). 
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FIGURE 7. ( a )  Stability diagram in (Kc, K,) space for the three-dimensional nonlinear 
Schrodinger equation. koao = 0.1. ( b )  Stability diagram in (Ax, A,) space, where A, = Kx/2kiao, 
A, = K,/2kiao for the three-dimensional nonlinear Schrodinger equation. The dependence on 
koao is completely scaled out in this co-ordinate system. 

unstable regions predicted by equations (21) and (13) is that the latter is now finite 
in extent. For small values of koao, the instability region lies adjacent to Phillips 
‘figure-of-eight’ diagram (!2 5 0) which is valid for weakly nonlinear point spectra. 
As k,a, increases, the wave vectors near the edges of the ‘figure-of-eight ’ stabilize, 
and the diagram approaches that of a pair of touching ‘horseshoes’. For sufficiently 
large k,a,, the longer waves also begin to stabilize, and the two ‘horseshoes’ split. 
Just before the total system stabilizes, the instability is concentrated at  K 0.78k0, 
and is strongly one-dimensional. 

The fact that the instability region is finite in extent, and not infinite as predicted 
by the three-dimensional nonlinear Schrodinger equation, may have significant 
consequences in light of the findings of Yuen & Ferguson (1978a) and Martin & Yuen 
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-0.4 

FIGURE 8. ( a )  Stability diagram in (K,,K,) space for various values of wave steepness for equa- 
tion (13); - - -, koao = 0 (Phillips' figure-of-eight). ( b )  Stability diagram in (A,,A,) space, where 
Az = K,/2kzao, A, = K,/2k:a0 for various values of wave steepness for equation (13). --, 
koao = 0.01; - - -, koao = 0.1; - .  -, koao = 0.4; * - * -, koao = 0.48. 

(1980). Yuen & Ferguson ( 1 9 7 8 ~ )  performed numerical experiments on the time 
evolution of an unstable wave train using the two-dimensional nonlinear Schrodinger 
equation and demonstrated that only the prescribed unstable modes, and all their 
higher harmonics which are also unstable, actively participate in the evolutionary 
process. Since the instability extent is finite in the wavenumber range, given any 
unstable perturbation wavenumbers, only a finite number of modes dominate the 
evolution, and recurrence is highly likely. On the other hand, the instability region for 
three-dimensional modulation is infinite in extent according to the three-dimensional 
equation. It is expected that energy contained in the unstable modes can eventually 
leak out to higher and higher harmonics which are also unstable. This leakage of 
energy occurs in quasi-recurring fashion as found by Martin & Yuen (1980).  Now that 
the instability region is found to be finite in extent even in three dimensions, we once 
again expect the evolution to be dominated by a finite number of unstable wave com- 
ponents, and that the leakage identified by Martin & Yuen should not exist in 
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FIGURE 9. Stability boundary and neutral stability curve for infinitely long perturbations. 
_ - -  , stability boundary (Im IT = 0); - , neutral stability curve (Im IT = Re IT = 0). NLS, 
result from three-dimensional nonlinear Schrodinger equation; Z, results from Zakharov equa- 
tion (equation (13)); W, result from Whitham’s theory (exact in this limit). 

evolutions of deep-water wave trains subject t o  three-dimensional perturbations. 
This speculation has yet to be evaluated by actual computation. 

In  figure 9, we show the stability boundary and neutral stability curve as given by 
the three-dimensional nonlinear Schrodinger equation (19) and (20) and the Zakharov 
equation (3),  in the limit K-t  0, i.e. infinitely long modulation. I n  this limit, Whitham’s 
theory (Whitham 1974, p. 505) is exact for arbitrary values of k,a, (see also Lighthill 
1967). The governing equations for infinite wave vector modulation P(x, t )  and 
action density modulation I(x, t )  are 

where h = h(k, I )  is the angular frequency and J(k, I )  is the action density flux of 
the uniform wave train of wave vector k, and action density I,, and ( ), denote evolu- 
tion a t  k = k, and I = Io .  These quantities are known numerically from the exact 
calculation for deep-water waves (see, for example, Cokelet 1977). Following Peregrine 
& Thomas (1979), we substitute disturbances of the form exp[i(K.x-d)]  into ( 2 2 )  
and (23) to  get 

0- = -cosB+ 
8k k-K 

(24) 

F L h I  IOj 7 
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0 
FIGURE 10. Instability growth rate for various values of wave steepness from Zakharov’s equation 

(equation (13)). (a)  keno = 0.1, ( b )  koa ,  = 0.2, (c) koa, = 0.3, ( d )  koao = 0.4. 
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FIGURE lO(c, d ) .  For legend see p. 188. 

where k = ]kJ and J = IJI. The stability diagram associated with this expression is 
also shown in figure 9. It can be seen that for k,a,-+ 0 (corresponding to oblique dis- 
turbances) the results of the three-dimensional nonlinear Schrodinger equation, the 
Zakharov equation and Whitham’s theory all agree as expected. For larger values of 
k,a,, the Schrodinger equation residt is qualitatively incorrect. The Zakharov result, 
however, remains qualitatively consistent with Whitham’s theory; in fact, even the 
quantitative agreement is surprisingly good. 

Finally, we show the instability growth rate of three-dimensional perturbations 
for various values of k,cr,, in figure 10. 

7-2 
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Appendix 
The interaction coefficient T(k, kl, k2, k3) was first given by Zakharov (1968) and, 

with some minor corrections, by Crawford et al. (1980). It is recorded here for reference. 
Adopting the simplified notation introduced in 3 2, we write 

T(k, kl, k 2 ,  k3) = To, 1 , 2 , 3 '  

We have 
2 v y  3 3-1,l v-) 0.2.0-2 - 2V(--) 2.0,2-0 V(-)  1, 1 - 4 3  - 2vg-1,1 V&-i,o-3 

W1-3-W3 + W1 W1--3-@1+ W3 W1-2-W2 + W 1  
'0,1, 2.3 = - 

- 2v$rO), 3-OV~3)-2,2 - 2V6T!,0, l K $ i , 2 , 3  - 2VL$)-3,2,3VhTd, -0-1 + %, 1,2,3,  
W1-2- W 1 +  W2 W2+3- W2- W3 W2+3 + O 2  + 

where the second-order interaction coefficients Vk:?, are defined as 

with ki = Ikil, w1 = w ( k i ) ;  and the third-order interaction coefficient 

is defined as 
T%,1,2.3 = W(k, kl, k2, k3) 

- - - - - - 
K, 1,2,3 = w-O, -1,2,3 + w2,3, -0,-1 - w2,-l,-0,3 - w-0,2, -1.3 - w-0,3,2, -l-w3,-l,2,-0 

with 

REFERENCES 

BENJAMIN, T. B. 1967 Instability of periodic wavetrains in nonlinear dispersive systems. 

BENJAMIN, T. B. & FEIR, J. E. 1967 The disintegration of wavetrains on deep water. Part 1. 

BENNEY, D. J. 1962 Nonlinear gravity wave interactions. J .  Fluid Mech. 14, 577-584. 
BENNEY, D. J. & ROSKES, G. 1969 Wave instabilities. Stud. Appl. Math. 48, 377-385. 
COKELET, E.  D. 1977 Steep gravity waves in water of arbitrary uniform depth. Phil. Trans. 

CRAWFORD, D. R., SAFFMAN, P. G. & YUEN, H. C. 1980 Evolution of a random inhomogeneous 

DAVEY, A. 1972 The propagation of a weak nonlinear wave. J .  Fluid MecJb. 53, 769-781. 
HASIMOTO, H. & ONO, H. 1972 Nonlinear modulation of gravity waves. J .  Phys. SOC. Japan 33, 

Proc. Roy,  SOC. A 299, 59-75. 

Theory. J .  Fluid Mech. 27, 417-430. 

ROY. SOC. A 286, 183-230. 

field of nonlinear deep.water gravity waves. J .  Wave Motion 2 ,  1-16. 

805-8 1 1. 



Stability of a weakly nonlinear wave train 191 

LAKE, B. M. & YUEN, H. C. 1977 A note on some nonlinear water-wave experiments and the 
comparison of data with theory. J .  Fluid Mech. 83, 75-81, 

LAKE, B. M., YUEN, H. C., RUNGALDIER, H. & FERGUSON, W. E. 1977 Nonlinear deep-water 
waves: theory and experiment. Part  2. Evolution of a continuous wave train. J .  Fluid 
Mech. 83, 49-74. 

LIGHTHILL, M. J. 1967 Some special cases treated by the Whitham theory. Proc. Roy.  Soc. 
A 299, 28-53. 

LONGUET-HIGGINS, M. S .  1978 The instabilitics of gravity waves of finite amplitude in deep 
water. 11. Subharmonics. Proc. Roy.  Soe. A 360, 489-505. 

MCLEAN, J. W., MA, Y . C . ,  MARTIN, D. U., SAFFMAN, P. G. & YUEN, H. C. 1981 Three-dimen- 
sional instability of finite amplitude water waves. Phys.  Rev. Lett. (submitted). 

MARTIN, D. U., SAFFMAN, P. G. & YUEN, H. C. 1980 Stability of plane wave solutions of the 
two-space-dimensional nonlinear Schrodinger equation. J .  Wave Motion (to appear). 

MARTIN, D. U. & YUEN, H. C. 1980 Quasi-recurring energy leakage in the two-space dimen- 
sional nonlinear Schrodinger equation. Phys. Fluids (in press). 

PEREGRINE, D. H. & THOMAS, G. P. 1979 Finite-amplitude deep-water waves on currents. 
Phil .  Trans.  Roy.  Soc. A 292, 371-390. 

SAFFMAN, P. G. & YUEN, H. C. 1978 Stability of a plane soliton to infinitesimal two-dimen- 
sional perturbations. Phys.  Fluids 21, 1450-1451. 

SAFFMAN, P. G. & YUEN, H. C. 1980a Bifurcation and symmetry breaking in nonlinear dis- 
persive waves. Phys.  Rev. Lett. 44, 1097-1 100. 

SAFFMAN, P. G. & YUEN, H. C. 1980b A new type of three-dimensional deep-water wave of 
permanent form. J .  Fluid Mech. 101, 797-808. 

WHITHAM, G. B. 1974 Linear and Nonlinear Waves. Wiley. 
YUEN, H. C. & FERGUSON, W. E. 1978a Relationship between Benjamin-Feir instability and 

recurrence in the nonlinear Schrodinger equation. Phys.  Fluids 21, 1275-1278. 
YUEN, H. C. & FERGCISON, W. E. 19786 Fermi-Pasta-Ulam recurrence in the two-space 

dimensional nonlinear Schrodinger equation. Phys.  Fluids 21, 21 16-2118. 
ZAKHAROV, V. E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep 

fluid. Zh. Prikl .  Mekh.  Tekh.  Fiz .  2 ,  86-94. (Translated in J .  Appl .  Mech. Tech. Phys.  
2 ,  190-194.) 

ZAKHAROV, V. E. & RUBENCHIK, A. M. 1973 Instability of waveguides and solitons in non- 
linear media. Zh.  Eksp. Teor. Fiz .  65, 097-1011. (Translated in Sow. Phys. J .  Exp .  Theor. 

ZAKHAROV, V. E. & SHABAT, A. B. 1971 Exact theory of two-dimensional self-focusing and 
one-dimensional self-rnodulating waves in nonlinear media. Zh. Eksp. Teor. F i z .  61, 
118-134, (Translated in Sow. Phys.  . I .  E x p .  Theor. Ph?JS. 34, 84-69, 1972.) 

Phys.  38, 1974, 494-500.) 


